Rounding to the Nearest Hundred

Rinaldo wants to round his numbers to the nearest hundred.

Rinaldo's numbers are \qquad and \qquad .

The number 746 is between \qquad and \qquad .

It is closer to \qquad .

The number 769 is between \qquad and \qquad

It is closer to \qquad .

To round to the nearest hundred, look at the tens digit.

If the tens digit is $0,1,2,3$ or 4 , the hundreds digit stays the same, and the tens and ones digits are replaced by zeros.

Rinaldo rounds 746 to \qquad .

If the tens digit is $5,6,7,8$, or 9 , the hundreds digit is raised one, and the tens and ones digits are replaced by zeros.

Rinaldo rounds 769 to \qquad _.

Getting Started

Round each green number or amount of money to the nearest hundred or dollar. Circle the answer.

1. 500583600
2. 9009091,000
3. $\$ 6.00 \$ 6.30 \$ 7.00$
4. 100
147200
5. $700 \quad 750800$
6. 300329
400

Round each number or amount of money to the nearest hundred or dollar.
7. 429 \qquad 8. 650 \qquad 9. $\$ 9.81$ \qquad
10. 807 \qquad
11. 196 \qquad
12. $\$ 5.83$ \qquad
\qquad

Adding 4-Digit Numbers

Washington High School presented an outdoor band concert. How many people attended both nights?
\qquad for Friday.

We must find the total attendance.
Concert attendance was Attendance for Saturday was \qquad -.
To get the total, we add \qquad and \qquad -.

Add the ones. Regroup if needed.
1 1,452 $+1,868$ 0

Add the tens. Regroup if needed.
11 1,452 $+1,868$ 20

Add the hundreds.
Regroup if needed.

1,1	
1,452	
$+1,868$	
320	1,452
	1 $+1,868$, 320

The total concert attendance was \qquad .

Getting Started

Add.

1. 5,136
2. 4,878
$\begin{array}{r}\text { 2,364 } \\ \hline\end{array}$
$+1,597$
3. 2,819
$+1,504$

Copy and add.

4. $1,847+7,697$
5. $1,996+4,283$
6. $2,487+7,368$
7. $7,621+1,596$
8. $2,965+5,859$
9. $3,428+2,596$

Adding Money

Rachel was chosen to play on the third-grade baseball team. She must earn the money to buy her equipment. How much will she need to buy the glove and ball?

We want to know the cost of both the glove and the ball.

The glove costs \qquad
The baseball costs \qquad .
To find the total cost, we add \qquad and \qquad -.
$\operatorname{REMEMBER}$ Line up the dollars and cents.
Don't forget the dollar sign.

Rachel must earn \qquad .

Getting Started

Add.

1. $\$ 36.25$
$\begin{array}{r} \\ +\quad 5.36 \\ \hline\end{array}$
2. $\$ 27.79$
$\begin{array}{r} \\ +\quad 8.62 \\ \hline\end{array}$
3. $\$ 25.65$
4. $\$ 67.45$
11.36
14.75
6.50
$+\quad$
$\begin{array}{r}9.55 \\ +\quad \\ \hline\end{array}$

Copy and add.

5. $\$ 11.53+\$ 7.65$
6. $\$ 32.36+\$ 29.63+\$ 12.08$

Zeros in Subtraction

The states of North and South Carolina both are bounded on the east by the Atlantic Ocean． How much longer is North Carolina＇s coastline than South Carolina＇s？

We are looking for how much longer North Carolina＇s coast is than South Carolina＇s．

The North Carolina coast is \qquad miles long．

South Carolina＇s coast is \qquad miles long：

To find the difference，we subtract \qquad from \qquad

Subtract the ones． Regroup if needed．	Subtract the tens． Regroup if needed．	Subtract the hundreds．
	が触	\％201
－187	－187	－187
\bigcirc	14	114

North Carolina has \qquad more miles of coastline than South Carolina．

Getting Started

Subtract．

1.

603
$-\quad 258$

2． 700
3． $\begin{array}{r}201 \\ -\quad 83 \\ \hline\end{array}$
4.
$\begin{array}{r}909 \\ -435 \\ \hline\end{array}$
5． $\begin{array}{r}509 \\ -\quad 318 \\ \hline\end{array}$
6． $\begin{array}{r}903 \\ -\quad 605 \\ \hline\end{array}$
7． $\begin{array}{r}820 \\ -\quad 299 \\ \hline\end{array}$
8． $\begin{array}{r}405 \\ -\quad 376 \\ \hline\end{array}$

Copy and subtract．

9． $804-685$
10． $200-198$
11． $303-172$
12． $610-88$

Time to One Minute

It takes Manuel 20 minutes to walk home from soccer practice. Show on the clocks what time Manuel will arrive home.

We want to know what time Manuel will get home. He leaves practice at \qquad -.

It takes him \qquad minutes to walk home. It takes 5 minutes for the minute hand to move from one number to the next.

Manuel will get home at \qquad We read and write this as \qquad or twenty-five minutes to five.

Study the clock times.

nine twenty-eight

nine forty-seven or thirteen minutes to ten

Getting Started

For Exercises 1 and 2, write the time as you would see it on a digital clock.

Write the time as you would say it.

2.

3.

Meters and Kilometers

To keep animals away from the corn, Mrs. Lawrence wants to put a fence around the whole cornfield. How much fencing will she need?

We want to find the perimeter, or total distance, around the field.

We know:
1 meter $=100$ centimeters. $1 \mathrm{~m}=_\mathrm{cm}$
1 kilometer = 1,000 meters
$1 \mathrm{~km}=$ \qquad 1 m

The sides of the cornfield measure \qquad meters,
\qquad meters, \qquad meters, and \qquad meters.

Mrs. Lawrence needs \qquad meters of fencing.

Getting Started

Would you measure each in centimeters, meters, or kilometers?

1. height of a house

Circle the better estimate.
3. width of a book

22 cm 22 m
2. length of a river

Find the perimeter.

Milliliters and Liters

Jerry is making breakfast for his mother on Mother's Day. Will the bottle he is filling hold about 1 milliliter or 1 liter of orange juice?

We know:

1 liter = 1,000 milliliters

$1 \mathrm{~L}=$ \qquad mL

Liters and milliliters are measures of volume.
Volume is the amount of space inside something.

It takes about 4 glasses to fill one liter bottle.

It takes an eyedropper to measure about one milliliter.

The volume of the juice bottle is about 1 \qquad .

Getting Started

Would you measure the volume of these in milliliters or liters?

1.

2.

3.

4.

Grams and Kilograms

Matthew and his brother are unpacking the groceries. Does the bag of flour weigh about 2 grams or 2 kilograms?

We know:
1 kilogram = 1,000 grams

$$
1 \mathrm{~kg}=ـ \mathrm{~g}
$$

A paper clip weighs about 1 gram.

A large book weighs about 1 kilogram.

The bag of flour weighs about 2

Getting Started

Would you weigh each in grams or kilograms?

1.

2.

3.

4.

5.

6.

\qquad

Multiply.

1.

$\begin{array}{r}7 \\ \times 3 \\ \times 3 \\ \hline\end{array}$ $\begin{array}{r}5 \\ \times 8 \\ \hline\end{array}$ $\begin{array}{r}4 \\ \times 3 \\ \hline\end{array}$ $\begin{array}{r}6 \\ \times 0 \\ \hline\end{array}$

4
2. 4 $\begin{array}{r}0 \\ \times 5 \\ \hline\end{array}$

1
5
$\begin{array}{r}4 \\ \times 1 \\ \hline\end{array}$
5

3.

| 3 | 3 | 2 | 2 |
| ---: | ---: | ---: | ---: | ---: |
| $\times 9$ | | | |
| $\times 0$ | $\times 7$ | | |

4. 9
$\begin{array}{r}3 \\ \times 2 \\ \hline\end{array}$
$\times 8$
0
$=$
9
$=$

Multiply.

1.9
$\begin{array}{r}9 \\ \times 9 \\ \hline\end{array}$
2. $\begin{array}{r}8 \\ \times 7 \\ \hline\end{array}$
3. 5
4. 7
$\times 5$
5. $\begin{array}{r}7 \\ \times 6 \\ \hline\end{array}$
6. $\begin{array}{r}6 \\ \times 9 \\ \hline\end{array}$
7. $\begin{array}{r}9 \\ \times 5 \\ \hline\end{array}$
8.
$\begin{array}{r}8 \\ \times 5 \\ \times \quad 5 \\ \hline\end{array}$
10.
$\begin{array}{r}711 . \\ \times 8 \\ \times 8 \\ \hline\end{array}$
12. $\begin{array}{r}7 \\ \times 9 \\ \hline\end{array}$
13. $\begin{array}{r}9 \text { 14. } \\ \times 6 \\ \times 69 \\ \hline\end{array}$
15.
916.
$\times 8$
$\times 8$
17.
$\begin{array}{r}818 . \\ \times 6 \\ \times 8 \\ \hline\end{array}$
19. $\begin{array}{r}6 \\ \times 6 \\ \hline\end{array}$
20.

22. $7 \times 9=$ \qquad 23. $7 \times 8=$ \qquad 24. $6 \times 9=$ \qquad 25. $6 \times 7=$ \qquad
26. $9 \times 8=$
27. $6 \times 9=$ \qquad 28. $6 \times 7=$ \qquad 29. $7 \times 6=$ \qquad
30. $7 \times 7=$ \qquad
31. $8 \times 6=$ \qquad 32. $8 \times 7=$ \qquad 33. $9 \times 9=$ \qquad

Solve each problem.

34. There are 6 rows of trees. Each row has 9 trees. How many trees are there?
35. Balloons are sold in packages of 8. Rhonda bought 7 packages. How many balloons did Rhonda buy?
36. Use the prices in the chart below to find the total cost of the order.

Sale
Washers $\$ 1$
Hammers\$9
Screwdrivers\$4
Wrenches \$3
Pliers $\$ 7$

Order Form			
Number	Item	Cost	Total
5	Hammers		
4	Wrenches		
9	Pliers		
Total Cost			

Multiplying by 1-Digit Factors, Two Regroupings

Mr. Harris made 4 round trips on business from Ellis to Washington. How many travel miles should Mr. Harris record on his expense report?

Mr. Harris wants to know how many miles he drove, so he can fill out his expense report.

The distance between Ellis and Washington is \qquad miles.

A round trip between the cities is 2 times the distance between them, or \qquad
Mr. Harris made \qquad round trips.

Getting Started

Multiply.

1. 246
$\begin{array}{r}\times \quad 3 \\ \hline\end{array}$
2. 508
$\begin{array}{r}\times \quad 7 \\ \hline\end{array}$
3.

4.
835

Copy and multiply.
5. 623×6
6. 290×4
7. 257×8
8. 399×9

Multiply.

1.

326
$\begin{array}{r}\times \quad 4 \\ \hline\end{array}$
2.

845
$\times \quad 7$

3.

329
$\times \quad 9$

4. 334
$\begin{array}{r}\times 6 \\ \hline\end{array}$
5. 212
$\begin{array}{r}\times \quad 3 \\ \hline\end{array}$
6. 296
$\begin{array}{r}\times \quad 8 \\ \hline\end{array}$
7. 427
$\begin{array}{r}\times \quad 2 \\ \hline\end{array}$
8. 725
$\begin{array}{r}\times \quad 5 \\ \hline\end{array}$
9.

487
$\times \quad 7$

10.

183
$\times \quad 2$

11. 675

12. $\begin{array}{r}526 \\ \times \quad 3 \\ \hline\end{array}$
13.

416
$\times 6$
14. 807
$\begin{array}{r}\times \quad 6 \\ \hline\end{array}$
15. 219

16. 438
$\times 7$

Copy and multiply.

17. 157×8
18. 4×538
19. 175×9
20. 416×3
21. 239×7
22. 757×2
23. 5×919
24. 9×630
25. 4×212
26. 8×326
27. 808×3
28. 5×394

Problem Solving

Solve each problem.
29. Juanita started with $\$ 24.50$. She spent $\$ 19.38$. How much money did she have left?
31. Each weekday for one week, 146 lunches were served in the school cafeteria. How many lunches were served?
30. Bill bought a sweater for $\$ 29.50$ and a shirt for $\$ 16.37$. How much did he spend?
32. The custodian set up 8 rows of chairs, with 125 chairs in each row. How many chairs did the custodian set up?

Geometry

Lesson 10-1

Plane Figures

Plane figures are shapes that appear on flat surfaces.
Some plane figures, like squares and triangles, are called polygons. They have straight sides and corners. Other plane figures, like circles, have curved sides and no corners.

Study these plane figures. They are polygons.

rectangle

pentagon

hexagon

octagon

square

circle

triangle

Getting Started

Write the name of the plane figure you see in each object.

1.

2.

3.

4.

Complete the table.
5.

Plane Figure	Name	Number of Straight Sides	Number of Corners	Is the figure a polygon?
\square				

Lines, Rays, and Line Segments

A point is a position in space.

A line is a set of points that go on indefinitely in both directions.

A line segment is part of a line. It has two endpoints.

A ray is part of a line. It has one
 endpoint.

A line that goes across is called a horizontal line.

Getting Started

Write the name for each.

A line that goes up and down is called a vertical line.

Lines that meet at one point are called intersecting lines.

Lines that do not intersect in the same plane, or flat surface, are called parallel lines.

1.

2.

3.

4.

Angles

Two rays that have a common endpoint make an angle. The common endpoint is called the vertex of the angle.

Angles are named according to the size of their openings. We can name angles by comparing the size of their openings to a right angle.

An angle that forms a square corner is called a right angle. The symbol used to show a right angle is \urcorner.
\qquad

An acute angle has less of an opening than a right angle.

An obtuse angle has a greater opening than a right angle but less than a straight line.

We say that lines, line segments, or rays that form right angles are perpendicular.

Getting Started

Write the name of each angle.
1.

2.

3.

4.

Write the number of right angles in each plane figure.

5.

6.

7.

Triangles

Look at the flag for Guyana, a small country in South America. What kinds of angles are on the flag? There are \qquad angles and \qquad angles on

the flag.
There are several different kinds of triangles on
Guyana's flag. To name a triangle, we can look at the lengths of its sides.

equilateral triangle
All sides are the same length.

isosceles triangle At least two sides are the same length.

scalene triangle
None of the sides are the same length.

On Guyana's flag, there are \qquad triangles and \qquad triangles.

Another way to name a triangle is by looking at the size of its angles.

right triangle
One angle is a right angle.

acute triangle
All three angles are acute angles.

obtuse triangle

One angle is an obtuse angle.

On Guyana's flag, there are \qquad triangles and \qquad triangles.

Getting Started

Write equilateral, isosceles, or scalene for each triangle.
1.

2.

3.

Quadrillaterals

All the figures Daria drew on the grid are quadrilaterals. Each figure is a polygon with 4 sides.

The figure labeled A is a Figure C is a square.

Quadrilaterals are named by their sides and angles.

quadrilateral
Quad-means "four"four sides and four angles.

parallelogram
Opposite sides are parallel and the same length. is a \qquad

Getting Started

Write the name of each quadrilateral.

rectangle
Four right angles and opposite sides are the same length.

rhombus
Opposite sides are parallel and all sides are the same length.

square
Four right angles and all sides are the same length.

There is only one pair of parallel sides.

In Daria's drawings above, figure B is a \qquad figure D , figure E is a \qquad , and figure F is a \qquad .
1.

2.

3.

4.

Pictographs

Roberto collects scallop shells．He made a pictograph to show the number of shells he had collected each month．How many shells did Roberto collect in July？

We want to find the number of shells Roberto collected in July．

The graph shows \qquad shells for July．

Each picture stands for \qquad actual shells．

Shell Collection	
June	显
July	（10）曻
August	
September	

Each 渋 stands for 5 shells．

To find the number of shells collected in July，we multiply \qquad by \qquad ＿．

\qquad ＝ \qquad
Roberto collected \qquad scallop shells in July．

Getting Started

Use the pictograph to answer each question．

1．How many shells did Roberto collect in August？ \qquad
2．How many shells did Roberto collect in June？ \qquad
3．How many shells did he collect from June through September？ \qquad
4．How many more shells did Roberto collect in July than in June？ \qquad
5．In which months did Roberto collect the same number of shells？ \qquad

6．In which month did Roberto collect the most shells？ \qquad

Making and Using Line Graphs

A line graph is a good way to show changes in information over time. This line graph shows the rainfall for 2004. What was the greatest rainfall and when did it occur?

We want to find the greatest rainfall and the month it occurred.
The inches of rainfall go up the \qquad side of the line graph.

The \qquad goes across the \qquad of the line graph.

To find the greatest rainfall amount, start with the lowest amount on the graph.
Follow the inches up the side of the chart to the highest dot, \qquad .
Then go down in a straight line to the bottom of the chart to \qquad .

The greatest rainfall was 11 inches and it occurred in \qquad .

Getting Started

Use the line graph above to answer these questions.

1. What was the rainfall in June?
\qquad
2. In what month was the least rainfall? \qquad
3. What was the least amount of rainfall? \qquad
4. Between which two months was there the greatest difference in rainfall? \qquad

Naming Parts of a Whole

Rosita is making a quilt for her bed. She has finished 3 of the quilt's 4 squares. What part of the quilt has Rosita completed?

We want to write a number that shows the part of the quilt that is finished.

Rosita has finished \qquad squares of the quilt.

The finished quilt will have \qquad squares.

We use a fraction to show what part is finished.

> finished parts $\rightarrow \frac{3}{4} \leftarrow$ numerator \quad parts in the $\rightarrow \mathbf{4} \leftarrow$ denominator whole quilt

Three-fourths or $\frac{\square}{\square}$ of the quilt is finished.

Getting Started

Write each as a fraction.

1. five-twelfths \qquad 2. one-eighth \qquad 3. three-hundredths \qquad

Write the fraction of each figure that is green.
4.

5.

6.

7.

8.

$\begin{array}{r}1 \\ - \\ \hline\end{array}$
9.

Writing Equivalent Fractions

Jeff and Nadia are cutting pies to serve at the PTA social. Jeff cuts his pies into thirds, and serves $\frac{1}{3}$ of a pie to each person. Nadia cuts her pies into sixths. How many sixths does Nadia have to serve to each person to equal Jeff's serving?

We want to know how many of Nadia's pieces equal one of Jeff's.
Each of Jeff's pieces is $\frac{\square}{\square}$ of a pie.
Nadia cuts her pie into \qquad equal pieces.

We can draw a picture and compare the pies.

One-third of Jeff's pie equals $\frac{\square}{\square}$ of Nadia's pie.

Fractions that are equal are called equivalent fractions.

Getting Started

Write the equivalent fractions.

1.

$\frac{1}{2}=$ \qquad
2.

 $\frac{1}{3}=$ \qquad

Draw a picture to help you complete each number sentence.
3. $\frac{1}{2}=\frac{\square}{6}$
4. $\frac{3}{4}=\frac{\square}{8}$

Write the equivalent fractions.

1.

$$
\frac{1}{3}=
$$

3.

$$
\frac{2}{6}=
$$

5.

$$
\frac{3}{6}=
$$

\qquad
7.

$$
\frac{4}{8}=
$$

\qquad
4.

2.

$$
\frac{1}{4}=
$$

\qquad

$$
\frac{2}{5}=
$$

\qquad
6.

$\frac{3}{4}=$ \qquad
8.

$\frac{2}{10}=$ \qquad

Draw a picture to help you complete each number sentence.
9. $\frac{8}{10}=\frac{\square}{5}$
10. $\frac{\square}{9}=\frac{1}{3}$
11. $\frac{3}{6}=\frac{\square}{12}$
12. $\frac{4}{8}=\frac{\square}{2}$

Adding Fractions

On Monday, Beth's father told her he had worked $\frac{1}{5}$ of his workweek already. On Wednesday, he said he had worked another $\frac{2}{5}$ of his week. What part of the week had her father worked?

We want to find what part of the week Beth's father worked so far.
By Monday evening he had worked $\frac{\square}{\square}$ of a week.
Tuesday and Wednesday he had worked another $\frac{\square}{\square}$ of a week.
To find the part of the week that he had worked, we add $\frac{1}{5}$ and $\frac{2}{5}$.

Getting Started

Shade the figures. Add the fractions.
1.

Shade $\frac{3}{6}$.
Shade another $\frac{1}{6}$.
$\frac{3}{6}+\frac{1}{6}=$ \qquad
2.

Shade $\frac{2}{8}$.
Shade another $\frac{3}{8}$.
$\frac{2}{8}$
$+\frac{3}{8}$
\qquad
Shade the figures. Add the fractions.
1.

Shade $\frac{1}{6}$.
Shade another $\frac{2}{6} . \quad \frac{1}{6}+\frac{2}{6}=$ \qquad
3.

Shade $\frac{3}{8}$.
Shade another $\frac{2}{8} . \quad \frac{3}{8}+\frac{2}{8}=$ \qquad
5.

Shade $\frac{1}{4}$.
Shade another $\frac{2}{4} . \quad \frac{1}{4}+\frac{2}{4}=$ \qquad
7.

Shade $\frac{4}{9}$.
Shade another $\frac{3}{9} . \quad \frac{4}{9}+\frac{3}{9}=$ \qquad
9. \square

Shade $\frac{5}{10}$.
Shade another $\frac{3}{10} . \quad \frac{5}{10}+\frac{3}{10}=$ \qquad
2.

Shade $\frac{2}{5}$.
Shade another $\frac{2}{5}$.
4.

Shade $\frac{3}{10}$.
Shade another $\frac{2}{10}$.

$$
\frac{3}{10}
$$

$$
+\frac{2}{10}
$$

6.

Shade $\frac{3}{7}$.
Shade another $\frac{4}{7}$.
8.

Shade $\frac{5}{8}$.
Shade another $\frac{2}{8}$.
10.

Shade $\frac{2}{6}$.
Shade another $\frac{3}{6}$.

Subtracting Fractions

Daphne is making instant pudding. She needs $\frac{1}{4}$ cup of milk. How much milk will she have left in her measuring cup?

We want to know how much milk Daphne will have left.
Daphne starts with $\frac{\square}{\square}$ cup of milk.
She uses $\frac{\square}{\square}$ cup of milk for pudding.
To find the part left over, we subtract $\frac{1}{4}$ from $\frac{3}{4}$.

$\frac{3}{4}-\frac{1}{4}=\frac{\square}{\overline{4}}$

Daphne has $\frac{\square}{\square}$ or $\frac{1}{2}$ of a cup of milk left.
REMEMBER When the denominators are the same, only the numerators are subtracted. The denominator remains the same.

Getting Started

Shade the figures. Subtract the fractions.
1.

Shade $\frac{5}{6}$.
Cross out $\frac{3}{6}$. $\quad \frac{5}{6}-\frac{3}{6}=$ \qquad
2.

Shade $\frac{6}{7}$. $\frac{6}{7}$
Cross out $\frac{5}{7}$.

Shade the figures. Subtract the fractions.
1.
 $\frac{1}{8}$

Shade $\frac{3}{8}$.
Cross out $\frac{1}{8} . \quad \frac{3}{8}-\frac{1}{8}=$ \qquad
3.

Shade $\frac{5}{7}$.
Cross out $\frac{2}{7} \cdot \quad \frac{5}{7}-\frac{2}{7}=$ \qquad
5.

Shade $\frac{3}{4}$.
Cross out $\frac{1}{4} . \quad \frac{3}{4}-\frac{1}{4}=$ \qquad
7.

Shade $\frac{9}{10}$.
Cross out $\frac{6}{10} . \quad \frac{9}{10}-\frac{6}{10}=$ \qquad
9.

Shade $\frac{5}{9}$.
Cross out $\frac{3}{9} . \quad \frac{5}{9}-\frac{3}{9}=$ \qquad

2. | | | | | |
| :--- | :--- | :--- | :--- | :--- |

Shade $\frac{5}{6}$.
Cross out $\frac{3}{6}$.
4.

Shade $\frac{2}{3}$.
Cross out $\frac{1}{3}$.
6.

Shade $\frac{7}{10}$.
Cross out $\frac{5}{10}$.
8.

Shade $\frac{4}{5}$.
Cross out $\frac{3}{5}$.
10.

Shade $\frac{7}{8}$.

